New Triterpenes from the Frond Exudate of the Fern Notholaena rigida

F. J. Arriaga-Giner

Centro I. + D., Tabacalera S.A., Planta Piloto, c/Embajadores 51, E-28012 Madrid

J. Rullkötter, T. M. Peakman

Institut für Erdöl und Organische Geochemie, Forschungszentrum Jülich GmbH, D-5170 Jülich 1

E. Wollenweber

Institut für Botanik der Technischen Hochschule, Schnittspahnstraße 3, D-6100 Darmstadt

Z. Naturforsch. 46c, 507-512 (1991); received December 28, 1990/April 4, 1991

Notholaena rigida, Pteridaceae, Farinose Frond Exudate, Triterpenes, Novel Natural Products

Two new triterpenoids, isolated from the frond exudate of the fern *Notholaena rigida*, have been identified as 3β , 12β , 25-trihydroxy-(20R-24R)-epoxy-dammarane-12-acetate (1), and 24R, 25-diO-isopropyliden-9(19)-cyclolanostan- 3β -ol (5), based on NMR spectroscopic studies

Introduction

The farinose coating on the lower frond surface of the fern *Notholaena rigida* Dav. was shown previously to contain the flavones scutellarein-6,7,4′-trimethyl ether and scutellarein-6,7-dimethyl ether as well as minor amounts of apigenin, apigenin-4′-methyl ether, and apigenin-7,4′-dimethyl ether [1]. The exudate material also contains a considerable amount of terpenoids, one of which has been assumed earlier to be a triterpenoid with a cycloartenol skeleton [1]. The structure of this product as well as that of a second product isolated later have now been elucidated by detailed spectroscopic studies

Materials and Methods

Dry fronds of *Notholaena rigida* were collected from plants growing along Highway 101 from Cd. Victoria close to Juamave, Ed. Tamaulipas, Mexico, in May 1983. Vouchers (G. Yatskievych & E. Wollenweber 83–109) are kept in the University of Arizona Herbarium in Tucson, Arizona (ARIZ), and in E. W.'s personal herbarium. Dry fern material was rinsed with acetone to dissolve the exudate. From 520 g of *N. rigida* 36 g of material were obtained after evaporation of the solvent. One portion of this material was subjected to col-

Reprint requests to E. Wollenweber.

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0939–5075/91/0700–0507 \$01.30/0

umn chromatography on silica (eluted with toluene and increasing amounts of methyl ethyl ketone and methanol), another portion was passed over Sephadex LH-20 (eluted with methanol) to separate terpenoids from flavonoids. In this way two of the terpenoids present were obtained as colourless crystals. TLC control of fractions was performed on silica and spots were visualized by spraying with Naturstoffreagenz A (for flavonoids) and MnCl₂ reagent (for terpenoids; cf. [2]). Mass spectra of the isolated products as well as of their trimethylsilyl derivatives were measured. The latter were prepared by treatment with BSTFA + 1% TMCS in the presence of an equal volume of pyridine at 50 °C for 2 h. Instruments used were Varian MAT 311 and VG 7070 E mass spectrometers. Samples were introduced via a solid probe, spectra were recorded at 70 eV. Elemental compositions of molecular ions and fragment peaks were determined at 10,000 resolution (10% valley). NMR spectra were recorded in CDCl₃ on a Bruker NMR spectrometer AC-300 at 300 MHz (for ¹H) and at 75.4 MHz (for ¹³C). Chemical shifts are given against chloroform (δ 7.26 for ¹H and δ 77.0 for ¹³C). sp³ Hybridized carbons were distinguished using the DEPT technique. Melting points are uncorrected.

Compound **1.** ¹H NMR δ ppm (J, Hz): 0.75, 0.82, 0.92, 0.95, 0.97, 1.08, 1.16, 1.17 (3 H each, all s), 1.99 (<u>CH</u>₃CO-, s), 3.18 (H-3, dd; 11.0, 4.2), 3.63 (H-24, dd; 7.5, 6.5) and 4.81 (H-12, ddd; 10.5, 10.5, 5.4). ¹³C NMR: see Table I. EI-MS m/z (rel. int.): see Fig. 1.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Compound **5.** ¹H NMR (CDCl₃) δ ppm (J, Hz): 0.33 (H-19, d; 4.4), 0.55 (H-19, d; 4.4), 0.80, 0.88, 0.96, 0.97, 1.10, 1.25, 1.33, 1.41 (3 H each, all s), 0.90 (Me-21, d; 6.8), 3.28 (H-3, dd; 8.4, 4.5) and 3.64 (H-24, dd; 8.8, 4.0). ¹³C NMR: see Table I. EI-MS m/z (rel. int.): 500 (M⁺, 10), 485 (M⁺-Me, 31), 482 (M⁺-H₂O, 26), 467 (M⁺-Me-H₂O, 7), 442 (9), 439 (6), 427 (8), 424 (7), 409 (21), 360 (16), 203 (17), 187 (12), 175 (23), 135 (25), 121 (30), 107 (37), 95 (45), 69 (43) and 43 (100).

Results

Compound 1 forms colourless crystals, m.p. 177-179 °C. The mass spectrum lacks a molecular ion. The fragment of highest mass-to-charge ratio occurs at m/z 503 ($C_{31}H_{51}O_5$) and corresponds to the loss of a methyl group from the molecular ion. This indicates an elemental composition of $C_{32}H_{54}O_5$ for the intact molecule (nominal molecular mass 518) which is in accordance with the num-

5

ber of carbon atoms detected by ¹³C NMR spectroscopy (see below). The silylated compound shows a peak at m/z 647 as the ion of highest massto-charge ratio, and this corresponds to the presence of two hydroxyl groups. The base peak in the mass spectrum of compound 1 (m/z 143; shifted to m/z 215 in the TMS derivative), arises from sidechain cleavage of the tetracyclic triterpene with charge retention in the side-chain fragment. The base peak in the mass spectrum of the TMS ether is at m/z 131 and is attributed to a silylated 2-hydroxyisopropyl group as, e.g., in hopan-22-ol TMS ether [3]. The conjugate fragments (loss of 2-hydroxyisopropyl group) occur at m/z 459 $(C_{29}H_{47}O_4$; underivatized triterpene) and m/z 531 (TMS ether), respectively. Loss of 60 mu from the M⁺-15 ions in both compounds indicates the presence of an acetate group $(m/z 443, C_{29}H_{47}O_3, and$ m/z 587, respectively). Fragments at m/z 400 and 472 (TMS derivative), respectively, involve the loss of both the 2-hydroxyisopropyl and the acetate group. The main fragments in the mass spectrum of compound 1 are consistent with those described earlier for a series of dammaranes [4-6] including small but significant fragments at m/z 207 and m/z189 for 3-hydroxy dammaranes.

The ¹H NMR spectrum of compound **1** exhibits nine methyl signals (all singlets) indicating a triterpenoid structure. One of them is deshielded (1.99 ppm) and attributed to an acetoxy group. Three sets of one-proton resonances were observed at 3.18, 3.63 and 4.81 ppm which correspond to methine hydrogens adjacent to an oxygen substituent. Double resonance experiments demonstrated that they are not coupled to each other.

Following on from the MS data, which suggested a 3-hydroxy-dammarane skeleton, the one-proton resonance at 3.18 was assigned to H-3 α on the basis of its splitting pattern which clearly indicated one axial-axial coupling (J = 11.0 Hz) and one axi-

al-equatorial coupling (J=4.2 Hz). The location of the acetate group to C-12 β then followed from the splitting pattern of the one-proton resonance at 4.81 ppm as previously reported for a 12 β -acetoxy-dammarane derivative [6]. The remaining observable one-proton resonance (3.63 ppm) was then assigned as H-24 of a (20,24)-epoxy-dammarane [6].

The 13 C NMR spectrum of 1 displays 32 carbon atom signals (Table I) whose chemical shifts are consistent with a 12β -acetoxy- 3β ,25-dihydroxy-(20,24)-epoxy-dammarane structure by comparison with related compounds (see structures 2, 3 and 4 in Table I) described in the literature [6–10]. Epimers at C-20 can be distinguished by examina-

Table I. ¹³C NMR chemical shifts for compounds 1 and 5, and literature data for aid in determining the assignment of 1.

Carbon	Compd. 1	Compd. 2 [8]	Compd. 3 [8]	Compd. 4 [6]	Compd. 5
1	38.8 (t)		39.0		31.9 (t)
2	27.2 (t)		27.4		30.3 (t)
2 3 4 5	78.6 (d)		78.9		78.8 (d)
4	38.8 (s)		39.0		40.5 (s)
5	55.7 (d)		55.9		47.1 (d)
6	18.2 (t)		18.3		21.1 (t)
7	34.4 (t)		35.3		28.2 (t)
8	39.5 (s)		40.4	39.8	48.0 (d)
9	50.5 (d)		50.7	50.4	20.0 (s)
10	37.1 (s)		37.1		26.0 (s)
11	28.3 (t)	30.5		28.3	$26.0(t)^{a}$
12	75.5 (d)	70.7		75.6	35.5 (t)
13	46.2 (d)	49.0		46.3	45.3 (s)
14	52.1 (s)	51.8		52.3	48.8 (s)
15	31.1 (t)	31.4			32.9 (t)
16	26.0 (t)	26.9			$26.3(t)^{a}$
17	49.7 (d)	49.9			52.2 (d)
18	$15.5 (q)^{b}$	16.1	16.2	15.9	$18.2 (q)^{c}$
19	$16.0 (q)^{b}$	15.6	16.5	15.6	29.9 (t)
20	85.7 (s)	86.4			36.3 (d)
21	22.2 (q)	21.3			$18.0 (q)^{c}$
22	38.7 (t)	39.1			33.1 (t)
23	26.7 (t)	26.0			26.3 (t)a
24	83.3 (d)	86.5			83.8 (d)
25	70.9 (s)	70.3			80.2 (s)
26	24.1 (q)	24.7			22.9 (q)
27	$27.5 (q)^{c}$	27.8			$26.4 (q)^{b}$
28	27.9 (q)°		28.0		19.3 (q)
29	$15.3 (q)^{b}$		15.4		25.4 (q)
30	17.5 (q)				14.0(q)
Subst.	170.6 (s)				106.3 (s)
	21.8 (q)				28.6 (q)
	(-1)				$26.9 (q)^{b}$

a. b. c: Signals are interchangeable within the same column. — For compounds 2, 3 and 4 only the relevant chemical shifts have been included. In the case of compound 4 the assignments have been made by interpretation of the data reported previously [6].

tion of the chemical shifts of C-21 and C-22 [7, 8]. Thus, the chemical shift of C-21 is shielded in the $(20\,R)$ isomer relative to that of the $(20\,S)$ isomer whilst for C-22 the opposite phenomenon is observed. Comparison with related $12\,\beta$,25-dihydroxy-(20,24)-epoxy-dammarane derivatives [8, 9] indicates that for $(20\,R)$ stereochemistry chemical shifts for C-21 and C-22 at ca. 21 and 39 ppm and for $(20\,S)$ stereochemistry at ca. 27 and 33 ppm are observed. The chemical shifts for C-21 and C-22 in 1 at 22.2 and 38.7 ppm clearly indicate, therefore, the $(20\,R)$ configuration.

Epimers at C-24 are also revealed by 13 C NMR spectroscopy [8, 9]. Again by comparison with related 12 β ,25-dihydroxy-(20,24)-epoxy-dammarane derivatives [8, 9] it is apparent that the chemical shifts of C-26 and C-27 are resolved from each other by 1–2 ppm when C-21 and the 2-hydroxy-isopropyl group at C-24 are arranged in a *trans* spatial relationship to each other and by 3–4 ppm when they are *cis*. On this basis the difference of 3.4 ppm in the chemical shifts for C-26 and C-27 in 1 indicates a *cis* relationship and hence the (24 R) stereochemistry. Compound 1 is assigned, therefore, as 12 β -acetoxy-3 β ,25-dihydroxy-(20 R,24 R)-epoxy-dammarane.

Compound 5 forms colourless crystals, m.p. $189 \,^{\circ}$ C. Its 1 H NMR spectrum revealed the existence of nine methyl groups, one being secondary (doublet), between 0.91 and 1.42 ppm. The presence of two very shielded one-proton doublets ($J = 4.4 \, \text{Hz}$) at 0.33 and 0.55 ppm suggested the existence of a cyclopropane ring in the triterpene skeleton. Moreover, two methine groups bearing oxygen atoms were observed as double doublets at 3.28 and 3.65 ppm, respectively, remaining unaffected by double irradiation experiments.

The 13 C NMR spectrum provided significant information (see Table I), with carbon atom resonances in complete agreement with a 9(19)-cyclolanostane skeleton possessing two secondary and a tertiary hydroxyl group, no double bonds nor carbonyl groups, but an uncommon fully substituted sp³ carbon with a signal at 106.31 ppm. Such a resonance as well as the nine methyls, in addition to the carbon atom forming the cyclopropane ring in a molecular formula of $C_{33}H_{56}O_3$ (M $^+$ 500), suggested the presence of an acetonide.

The ¹³C NMR data of compound **5** are exactly the same as those reported for 3,24,25-cycloarta-

netriol, isolated from Mangifera indica [11], as well as those for the corresponding 24(25)-epoxide [12], except for values for C-24 and C-25, which should carry the acetonide. Reviewing the literature, we found that the four isomers (at C-3 and C-24) of such a 3,24,25-cycloartanetriol were synthesized earlier in order to correlate protolyofoligenic acid with cycloartenol [13, 14]. Among several products, the authors obtained, in fact, the corresponding four 24,25-di-O-isopropylidene derivatives. While carbon resonances were not reported, we can establish the C-24 configuration as R, based on ¹H NMR multiplicity of H-24, which appears as double doublet in the spectrum of compound 5 (reported as broad doublet and broad triplet for R and S configuration, respectively [13]).

The mass spectrometric fragmentation pattern of compound $\mathbf{5}$ is also in accordance with those of its afore-mentioned derivatives. B and C ring cleavages as well as losses of water, methyl and side chain dominate in the mass spectrum with no influence of C-3 or C-24 configuration [15]. Thus, based on the full spectroscopic evidence, compound is $24\,R$,25-diO-isopropylidene-9(19)-cyclolanostan-3 β -ol.

Discussion

A wide variety of triterpenoids, belonging to two major groups, is known to occur in ferns [16]. However, up to now such products have only rarely been reported to be accumulated externally, on the fern's surfaces. Fernenes form the "waxy" epicuticular layer on Polypodium aureum leaf and young rhizome [17] as well as the "chalky" coating on the lower frond surface of Plagiogyra formosana [17 and further Plagiogyra species, where hopanes have also been found [18]. A triterpene acid forms the major part of the conspicuous "farina" on the lower frond surface of Notholaena candida var. copelandii, which also contains several flavonoid aglycones [19]. With compounds 1 and 5 we have now found two further fern exudate triterpenoids.

To the best of our knowledge, compound 1 is a new natural product. Triterpenoids with a dammarane skeleton are fairly common in angiosperms [20, 21], but have been less frequently found in ferns [e.g. 22–24]. They may, however, be more widely distributed than is presently known:

geochemical evidence of the occurrence of dammaranes and dammarenes in many oceanic sediments suggests that this type of triterpenoids, like hopanoids and fernenes, is also biosynthesized by microorganisms [25, 26]. Various 3β ,12 β ,25-trihydroxy-substituted (20,24)-epoxy-dammaranes like compound 1 have been reported before to occur, e.g., in Betula platyphylla [27], B. papyrifera ssp. humilis [6], B. spec. [28], but in each case these compounds had a 20 S,24 R configuration. 3α -Hydroxydammaranes are also common in Betula species. Thus, the occurrence of 3β ,12 β ,25-trihydroxy-(20 R,24 R)-epoxy-dammarane-12-acetate (1), particularly in a fern, is unique.

Several cycloartenols have been reported before as fern constituents [16], but none as externally deposited products. Compound 5 is unusual in being an acetonide. It was first assumed, therefore, to be an artifact, formed during exudate processing with acetone. It can be shown, however, that "leaf washs" prepared e.g. with ethylacetate, toluene, or chloroform also contain this product. We believe, therefore, that compound 5 is, in fact, a natural acetonide of a triterpenoid. The acetone ketal of marmin, a 7-geranyloxycoumarin derivative from the fruit of Geijera parviflora Lindl. (Rutaceae), is the only naturally occurring acetonide reported before, but also in this case the authors considered it an artifact of their acetone treatment [29]. The only likely precursor for the formation of such an artifact would be the corresponding epoxide. It was shown, however, in a careful study, that epoxides react with acetone to form acetonides only in the presence of anhydrous CuSO₄, whereas no reaction at all was observed in the absence of CuSO₄[30].

The leaf exudate of *N. rigida* contains several further terpenoids that have not been isolated yet. They all show the same colour reaction with MnCl₂ as do compounds **1** and **5**, so they are probably very closely related structurally. TLC comparison further reveals that in *N. rigida* samples collected in different localities, the terpenoid profiles as well as the flavonoid profiles are more or less identical, varying only quantitatively.

Acknowledgements

Thanks are due to George Yatskievych, St. Louis, M.O. who accompanied E.W. on a collection trip in Mexico. The authors are grateful to M. C. Martinez-Martin (Repsol Quimica, Madrid) and H. Schmickler (Institut für Organische Chemie, Universität zu Köln) who recorded NMR spectra and to U. Disko (KFA Jülich) for assistance in mass spectrometric analysis. Financial support (to EW), by the Deutsche Forschungsgemeinschaft, of the plant collection trip as well as of laboratory work done in Darmstadt, is gratefully acknowledged. TMP thanks the Alexander von Humboldt-Stiftung for a research fellowship.

- [1] C. Scheele, E. Wollenweber, and F. J. Arriaga-Giner, J. Nat. Prod. 50, 181 (1987).
- [2] E. Wollenweber, I. Schober, P. Dostal, D. Hradetzky, and F. J. Arriaga-Giner, Z. Naturforsch. 41c, 87 (1986).
- [3] H. L. ten Haven, M. Rohmer, J. Rullkötter, and P. Bisseret, Geochim. Cosmochim. Acta 53, 3073 (1989).
- [4] Byung Hoon Han and Jae Hoon Kim, Soul-Taehakkyo-Saengyak-Yonguso-Opchock-ch. Soul **17**, 12 (1978).
- [5] I. Kitagawa, H. K. Wang, A. Tagaki, M. Fuchida, I. Miura, and M. Yoshikawa, Chem. Pharm. Bull. 31, 689 (1983).
- [6] P. B. Reichardt, J. Org. Chem. 46, 4576 (1981).
- [7] C. G. Francisco, R. Reire, R. Hernández, J. A. Salazar, and E. Suárez, Org. Mag. Res. 22, 34 (1984).
- [8] V. A. Denisenko, V. A. Novikov, G. V. Malinovskaya, and G. B. Elyakov, Izv. Akad. Nauk SSR, Ser. Khim 32, 2727 (1983).
- [9] O. Tanaka and S. Yahara, Phytochemistry 17, 1353 (1978).

- [10] S. Pedreros, B. Rodriguez, M. C. Torre, M. Bruno, G. Savona, A. Perales, and M. R. Torres, Phytochemistry 29, 919 (1990).
- [11] V. Anjaneyulu, K. Harischandra Prasad, K. Ravi, and J. D. Connolly, Phytochemistry 24, 2359 (1985).
- [12] J. de Pascual Teresa, J. G. Urones, I. S. Marcos, P. Basabe, Ma. J. Sexmero Cuadrado, and R. Ferndandez Moro, Phytochemistry 26, 1767 (1987).
- [13] J. Sakakibara, Y. Hotta, and M. Yasue, Chem. Pharm. Bull. 23, 460 (1975).
- [14] J. Sakakibara, Y. Hotta, and M. Yasue, Yakugaku Zasshi 95, 911 (1975).
- [15] J. Sakakibara, Y. Hotta, and M. Yasue, Yakugaku Zasshi 95, 1085 (1975).
- [16] T. Murakami, N. Tanaka, Occurrence, Structure and Taxonomic Implication of Fern Constituents (Progress in the Chemistry of Organic Natural Products 54; eds.: W. Herz, H. Grisebach, G. W. Kirby, and Ch. Tamm), Springer Verlag, Wien, New York 1988.
- [17] E. Wollenweber, K. E. Malterund, and L. D. Gómez, Z. Naturforsch. 36c, 896 (1981).

- [18] N. Tanaka, T. Noguchi, K. Kawashima, K. Kurihara, T. Matsudo, T. Murakami, Y. Saiki, and C.-M. Chen, Yakugaku Zasshi 107, 586 (1987).
- [19] E. Wollenweber, in: The Plant Cuticle (Linn. Soc. Symp. Series no. 10 (D. F. Cutler, K. L. Alvin, and C. E. Price, eds.), Academic Pres., London 1982.
- [20] P. Pant and R. P. Rastogi, Phytochemistry **18**, 1095 (1979).
- [21] M. C. Das and S. B. Makato, Phytochemistry 22, 1071 (1983).
- [22] M. Wij and S. Rangaswami, Ind. J. Chem. 13, 748 (1975).
- [23] Y. Arai, K. Masuda, and H. Ageta, Chem. Pharm. Bull. 30, 4219 (1982).

- [24] K. Masuda, K. Shiojima, and H. Ageta, Chem. Parm. Bull. 31, 2530 (1983).
- [25] J. O. Grimalt, L. Angulo, A. Lopez-Galindo, M. C. Comas, and J. Albaiges, Chem. Geol. 82, 349 (1990).
- [26] C. Meunier-Christmann, P. Albrecht, S. C. Brassell, H. L. ten Haven, and J. Rullkötter, unpublished results.
- [27] M. Nagai, N. Tanaka, O. Tanaka, and S. Ichisaka, Chem. Pharm. Bull. 21, 2061 (1973).
- [28] T. V. Pokushalova, N. D. Pokhilo, N. I. Uvarova, and L. I. Glebko, Khim. Prir. Soedin. 19, 592 (1983).
- [29] D. L. Dreyer and A. Lee, Phytochemistry 11, 763 (1972).
- [30] Ř. P. Hanzlik and M. Leinwetter, J. Org. Chem. **43**, 438 (1978).